On the Stability of Exponential Backoff

نویسندگان

  • Nah-Oak Song
  • Byung-Jae Kwak
  • Leonard E. Miller
چکیده

Random access schemes for packet networks featuring distributed control require algorithms and protocols for resolving packet collisions that occur as the uncoordinated terminals contend for the channel. A widely used collision resolution protocol is the exponential backoff (EB). New analytical results for the stability of the (binary) EB are given. Previous studies on the stability of the (binary) EB have produced contradictory results instead of a consensus: some proved instability, others showed stability under certain conditions. In these studies, simplified and/or modified models of the backoff algorithm were used. In this paper, care is taken to use a model that reflects the actual behavior of backoff algorithms. We show that EB is stable under a throughput definition of stability; the throughput of the network converges to a non-zero constant as the offered load N goes to infinity. We also obtain the analytical expressions for the saturation throughput for a given number of nodes, N. The analysis considers the general case of EB with backoff factor r, where BEB is the special case with r = 2. We show that r = 1/(1 - e(-1)) is the optimum backoff factor that maximizes the throughput. The accuracy of the analysis is checked against simulation results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Region of a Slotted Aloha Network with K-Exponential Backoff

Stability region of random access wireless networks is known for only simple network scenarios. The main problem in this respect is due to interaction among queues. When transmission probabilities during successive transmissions change, e.g., when exponential backoff mechanism is exploited, the interactions in the network are stimulated. In this paper, we derive the stability region of a buffer...

متن کامل

Effect of exponential backoff scheme and retransmission cutoff on the stability of frequency-hopping slotted ALOHA systems

The combinatorial effect of an exponential backoff scheme and retransmission cutoff on the stability of frequencyhopping slotted ALOHA systems with finite population is investigated in terms of the catastrophe theory. In the systems, the packet retransmission probabilities are geometrically distributed with respect to the number of experienced unsuccessful transmissions and a packet will be dis...

متن کامل

Analysis of the stability and performance of exponential backoff

New analytical results are given for the stability and performance of the exponential backoff (EB) algorithm. Previous studies on the stability of the (binary) EB have produced contradictory results instead of a consensus: some proved instability, others showed stability under certain conditions. In these studies, simplified and/or modified models of the backoff algorithm were often used to mak...

متن کامل

Buffered Aloha with K-Exponential Backoff -- Part I: Stability and Throughput Analysis

This two-part paper series studies the performance of buffered Aloha networks with K-Exponential Backoff collision resolution algorithms. Part I focuses on stability and throughput analysis and Part II presents the delay analysis. In Part I, the buffered Aloha network is modeled as a multiqueue single-server system. We adopt a widely used approach in packet switching systems to decompose the mu...

متن کامل

Stability and Throughput of Buffered Aloha with Backoff

This paper studies the buffered Aloha with K-exponential backoff collision resolution algorithms. The buffered Aloha network is modeled as a multi-queue single-server system. We adopt a widely used approach in packet switching systems to decompose the multi-queue system into independent first-in-first-out (FIFO) queues, which are hinged together by the probability of success of head-of-line (HO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2003